Short-Term Persistence in Mutual Fund Performance

Nicolas P. B. Bollen
Vanderbilt University

Jeffrey A. Busse
Emory University

We estimate parameters of standard stock selection and market timing models using daily mutual fund returns and quarterly measurement periods. We then rank funds quarterly by abnormal return and measure the performance of each decile the following quarter. The average abnormal return of the top decile in the post-ranking quarter is 39 basis points. The post-ranking abnormal return disappears when funds are evaluated over longer periods. These results suggest that superior performance is a short-lived phenomenon that is observable only when funds are evaluated several times a year.

The net new cash flow invested in U.S. mutual funds in 2000 was $229.2 billion, which exceeded the 2000 gross domestic product of all but 19 countries.¹ Not surprisingly, a large industry exists to provide investors with information to help them choose from among the thousands of available mutual funds. The existence of the mutual fund selection industry is predicated on the assumptions that some mutual fund managers possess significant ability and that this ability persists, allowing the astute investor to predict future performance based on past results.

From an academic perspective, assessing the existence and persistence of mutual fund managerial ability is an important test of the efficient market hypothesis; evidence of persistent ability would support a rejection of its semi-strong form. What should we expect in equilibrium? Grossman and Stiglitz (1980) argue that we should not expect that security prices fully reflect the information of informed individuals; otherwise, there would be no reward for the costly endeavor of seeking new information. In the context of mutual fund performance, we should expect some fund

managers to possess an informational advantage, but over what horizon? Berk and Green (2004) show theoretically that a fund manager’s informational advantage will be short-lived when investors direct their capital to recent winners. The goal of this article, therefore, is to determine empirically whether ability persists over a relatively short horizon.

Studies of ability focus on two types of managerial activity. Stock selection refers to predicting returns of individual stocks; market timing refers to predicting relative returns of broad asset classes. Prior studies generally share two features. First, most use monthly returns. Second, with some exceptions, the majority of studies find little evidence that fund managers generate positive abnormal returns over long horizons by following either a stock selection or a market timing strategy. Examples include Jensen (1969) and Elton et al. (1992) for stock selection over periods of 10–20 years, and Treynor and Mazuy (1966) and Henriksson (1984) for market timing over periods of 6–10 years.

A number of studies, however, find evidence that stock selection ability persists over periods as short as one year. These studies find that although funds on average generate negative abnormal returns, relative performance persists. Persistence studies include Hendricks, Patel, and Zeckhauser (1993), Goetzmann and Ibbotson (1994), Brown and Goetzmann (1995), Grinblatt, Titman, and Wermers (1995), Gruber (1996), Carhart (1997), Daniel et al. (1997), Nofsinger and Sias (1999), Wermers (1999), and Grinblatt and Keloharju (2000). Most of these articles attribute persistence at least in part to fund manager skill. Grinblatt, Titman, and Wermers (1995) and Carhart (1997), however, argue that the superior performance of top funds is a result of the momentum effect of Jegadeesh and Titman (1993). After including a momentum factor in his return model, Carhart finds that persistence largely disappears, except among the lowest performers, where it arises from persistently high expenses. This result suggests that fund managers possess little stock selection skill, since the top performing funds generate their superior returns simply by holding stocks that have recently had high returns.

In this article, we revisit the issue of persistence in mutual fund performance and focus on a relatively short measurement period of three months. To the extent that superior performance is short-lived, perhaps due to the competitive nature of the mutual fund industry [see Berk and Green (2004)] or to managerial turnover [see Chevalier and Ellison (1999)], a short measurement horizon provides a more precise method of identifying top performers. Analysis of quarterly periods is not possible with monthly returns because the short time series of observations precludes efficient estimation. For this reason we use daily mutual fund returns.

We start by estimating parameters of standard stock selection and market timing models over subsets of our mutual fund return data. For
each quarter in the sample except the last, we rank funds by their estimated abnormal return and form deciles. We then compute the abnormal return generated by each decile the following quarter. We find a statistically significant abnormal return for the top decile in the post-ranking quarter of 25–39 basis points, depending on whether we use a stock selection or a market timing model.

Our use of daily returns and three-month measurement periods contributes to the literature on mutual fund performance in two ways. For the first time, we provide evidence regarding short-term persistence. We find that the top decile of fund managers generates statistically significant quarterly abnormal returns that persist for the following quarter. The economic significance of the post-ranking abnormal returns is questionable, however, given the transaction costs and taxes levied on a strategy of capturing the persistent abnormal returns of the top decile. Second, we address a potential source of misspecification that may have biased prior studies against finding superior performance. In particular, the type of strategy followed by a given mutual fund is unobservable, and may change over time. In one version of our experiment, we allow for the coexistence of stock selection and market timing strategies, and we allow fund managers to switch strategies over time.

In order to reconcile our results with those of Carhart (1997), we document how our results change when we modify our experiment by mimicking aspects of Carhart’s procedure that differ from ours. First, Carhart ranks by prior year return and by prior three-year abnormal return, whereas we rank by prior quarter abnormal return. When we rank on prior return instead of abnormal return, the abnormal return in the post-ranking quarter disappears. Our selection procedure apparently identifies a different set of funds. Second, Carhart measures post-ranking performance over a 31-year horizon using a concatenated time series of post-ranking returns. In contrast, we estimate post-ranking performance over three-month horizons and average the results in the spirit of Fama and MacBeth (1973). When we construct a concatenated time series of the top decile’s post-ranking returns, the abnormal return again disappears.

To understand why the abnormal return disappears with a concatenated time series, we record the quarterly returns of each factor in our performance models over the entire concatenated series, as well as the average factor loadings of the top decile every quarter. The covariance between each factor return and the corresponding factor loading is negative. This suggests that although the top fund managers exhibit short-term stock selection and market timing ability, they suffer from perverse factor timing over a longer horizon. These results are consistent with the fund flow literature, which shows that the positive relation between fund returns and subsequent investor cash flow generates negative estimates of market timing.
The rest of the article is organized as follows. Section 1 reviews the models of mutual fund performance used in the study. Section 2 describes the data. Section 3 presents our empirical methodology, main results, and several specification and robustness tests. Section 4 examines the relation between short-term and long-term performance. Section 5 concludes the discussion.

1. Models of Mutual Fund Performance

Previous studies of mutual fund performance generally focus on either stock selection or market timing ability. This section reviews the literature on both, highlighting the innovations made in this article. Section 1.1 discusses stock selection ability, Section 1.2 discusses market timing ability, and Section 1.3 explains why we allow for the coexistence of both types of ability.

1.1 Stock selection

Studies of stock selection, dating back to Jensen (1968), generally use the intercept of factor model regressions to measure abnormal returns generated from picking stocks that outperform a risk-adjusted benchmark. We use Carhart’s (1997) four-factor model:

\[r_{p,t} = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{k,t} + \epsilon_{p,t}, \]

where \(r_{p,t} \) is the excess return of a mutual fund at time \(t \), and \(r_{k,t} \) are the returns of four factors, including the excess return of the market portfolio, the Fama and French (1993) size and book-to-market factors, and Carhart’s momentum factor. Prior studies show that the latter three factors capture the major anomalies of Sharpe’s (1964) single-factor CAPM, and we include the factors to avoid rewarding managers for simply exploiting these anomalies. We also include lagged values of the four factors, as in Dimson (1979), to capture the effect of infrequent trading of individual stocks on daily mutual fund returns.

Jensen (1969) finds that managers deliver negative abnormal returns. Using more recent data, Ippolito (1989) finds evidence of positive abnormal returns, but Elton et al. (1992) show that the benchmark chosen by Ippolito causes this result. Using a multi-factor model, Elton et al. find that abnormal fund returns are on average negative.

A related series of studies examines whether stock selection ability persists. Such studies base tests of persistence on correlation in

2 Wermers (2000) investigates both “characteristic selectivity” and “characteristic timing,” although these measures fall outside the standard risk-adjusted models of performance.
period-to-period fund performance. As mentioned earlier, a large number of studies document persistence over various horizons of at least one year. However, Carhart (1997) finds that persistence results from an omitted factor explaining equity returns, the momentum effect described by Jegadeesh and Titman (1993). In addition, Carhart’s evidence suggests that superior fund returns caused by positions in “hot” stocks result from luck rather than from a defined momentum strategy.

The monthly returns used by prior studies prevent them from investigating relatively short-term performance. Carhart (1997), for example, ranks funds by prior return, over one- to five-year horizons, and by the intercept from a four-factor version of Equation (1) estimated over three years. Presumably, one could rank by return over a shorter period, although this method could be interpreted as measuring the amount of risk assumed by a manager rather than his skill. Our use of daily data allows us to rank funds quarterly by risk-adjusted performance measures, such as the intercept in the factor model given by Equation (1), and to estimate three-month post-ranking performance.

1.2 Market timing

Most studies of the market timing ability of mutual fund managers infer ability from fund returns. To infer timing ability from fund returns, prior studies generally supplement standard factor model regressions with a term that captures the convexity of fund returns resulting from market timing. Treynor and Mazuy (1966; hereafter referred to as TM), for example, use the following regression to detect market timing:

\[r_{p,t} = \alpha_p + \beta_p r_{m,t} + \gamma_p r^2_{m,t} + \epsilon_{p,t}, \]

where \(\gamma_p \) measures timing ability. If a mutual fund manager increases (decreases) a portfolio’s exposure to equities in advance of positive (negative) excess market returns, then the portfolio’s return will be a convex function of the market return and \(\gamma_p \) will be positive.

Henriksson and Merton (1981; hereafter referred to as HM) develop a similar model of market timing. The HM regression captures the convex relation between the return of a successful market timer’s portfolio and the return of the market by allowing the portfolio’s \(\beta \) to alternate between two levels depending on the size of the market’s excess return:

\[r_{p,t} = \alpha_p + \beta_p r_{m,t} + \gamma_p I r_{m,t} + \epsilon_{p,t}, \]

where \(I \) is an indicator function that equals 1 if the market’s excess return is above some level, usually zero, and zero otherwise. In the HM regression, \(\gamma_p \) can be interpreted as the change in the portfolio’s \(\beta \) due to the fund manager’s timing activity.

We modify the two timing regressions in two ways. First, we include the three additional explanatory variables in Carhart’s (1997) four-factor
model of returns. Second, as before, we include lagged values of the four factors to capture the effect of infrequent trading of individual stocks on mutual fund returns.

Most previous studies of market timing in mutual funds, including the TM study and that of Henriksson (1984), find significant ability in only a few funds. The number of successful timers found by these studies is roughly consistent with the number expected under the null hypothesis. However, Bollen and Busse (2001) suggest that the statistical tests of prior studies lack power because they are based on monthly data. Using daily data, they find evidence of market timing ability in a significant number of the funds in their sample. Chance and Hemler (2001) have daily data that tracks the allocation strategies of 30 professional (non-mutual fund) market timers. They also find a significant number of successful market timers.

No prior study examines persistence in the market timing ability of mutual fund managers. Graham and Harvey (1996) study the asset allocation recommendations of investment newsletters. They find some evidence of a short-term “hot hands” phenomenon whereby newsletters are more likely to give correct advice in a given month if the prior month’s newsletter gave correct advice. However, they fail to detect long-term ability and conclude that an investor cannot identify a successful newsletter based on past performance. Chance and Hemler (2001) estimate the timing ability of professional market timers on two subsets of their data. Spearman rank correlations of the two sets of estimates are significant, and Chance and Hemler conclude that timing ability persists in their sample.

With daily data we can investigate short-term persistence in market timing ability. The persistence tests provide estimates of the economic significance of mutual fund market timing ability, which complement the recent evidence Bollen and Busse (2001) show for the existence of fund timing ability.

1.3 Switching strategies

Prior studies focus on either stock selection or market timing ability. Suppose, however, that some fund managers act more like stock pickers, while others are primarily market timers. By treating all managers as one type or the other, prior studies could be hampered by an inherent misspecification problem. The performance of stock pickers may not be adequately recognized in a market timing study, and vice versa. Furthermore, a particular fund manager might switch strategies or funds at some

3 Similarly, Kothari and Warner (2001) find through simulation that monthly returns provide poor power to reject the null that stock selection ability exists. They advocate exploiting information contained in the reported changes in fund portfolio holdings.
point in the sample, in which case treating every fund as following one strategy or the other will likewise give rise to a misspecification. Brown, Harlow, and Starks (1996), for example, suggest that fund managers change strategies over the calendar year depending on year-to-date performance to game compensation schemes. Also, Busse (1999) provides evidence that fund managers time exposure to the market to coincide with low levels of market volatility. In the third version of our experiment, we allow for the coexistence of stock selection and market timing strategies, and also allow fund managers to switch strategies over time. This iteration of the analysis will be less prone to misspecification resulting from cross-sectional differences in the strategies employed by fund managers, or from temporal variation in the strategy followed by a particular fund.

2. Data

We study daily returns of 230 mutual funds. The sample, taken from Busse (1999), is constructed as follows. A list of all domestic equity funds with a “common stock” investment policy and a “maximum capital gains,” “growth,” or “growth and income” investment objective and more than $15 million in total net assets is created from the December 1984 version of Wiesenberger’s *Mutual Funds Panorama*. Sector, balanced, and index funds are not included, nor are funds that change into one of these types in subsequent years during the sample period.

Daily per share net asset values and dividends from January 2, 1985 through December 29, 1995 are taken from Interactive Data Corp. *Moody’s Dividend Record: Annual Cumulative Issue* and *Standard & Poor’s Annual Dividend Record* are used to verify the dividends and dividend dates and to determine split dates. The net asset values and dividends are combined to form a daily return series for each fund as follows:

\[
R_{p,t} = \frac{\text{NAV}_{p,t} + D_{p,t}}{\text{NAV}_{p,t-1}} - 1,
\]

where \(\text{NAV}_{p,t}\) is the net asset value of fund \(p\) on day \(t\), and \(D_{p,t}\) are the ex-div dividends of fund \(p\) on day \(t\).

This sample does not suffer from survivorship bias of the sort identified in Brown et al. (1992) and Brown and Goetzmann (1995), wherein only funds that exist at the end of the sample period are included. However, funds that come into existence at some point between the end of 1984 and the end of the sample period are not included.\(^4\)

\(^4\) Although daily data on a wider cross-section of mutual funds are available from sources such as *Standard & Poor’s Micropal*, such data are prone to considerable error, including incorrect dividends, ex-div dates, and NAVs. The sample in this study has been corrected for most of these errors. See Busse (1999).
We construct daily versions of the size and book-to-market factors similar to the monthly factors of Fama and French (1993). We construct a daily version of the momentum factor similar to the monthly factor of Carhart (1997), except value-weighted. See Busse (1999) and Bollen and Busse (2001) for more details. For the return on the riskless asset, for each day, we use the CRSP monthly 30-day Treasury bill return (T30RET) divided by the number of days in the month.

3. Empirical Methodology and Results

This section presents tests of persistence in the stock selection and market timing abilities of mutual fund managers based on the four-factor model and on the two timing models. We estimate parameters of the regressions fund-by-fund on subsets of the data consisting of nonoverlapping three-month periods. We sort funds each quarter by their stock picking and market timing performance, and form deciles of funds. We then examine the performance of the deciles the following period. In Section 3.1, we focus on measuring the statistical significance of performance persistence. In Section 3.2, we present robustness tests to rule out spurious inference. In Section 3.3, we comment on the economic significance of our results.

3.1 Statistical significance of persistence

To measure managerial ability, for the non-timing model, we simply use the intercept, α_p, from the regression in Equation (1) as the daily abnormal return due to a manager’s stock picking performance. For the timing models, we define:

$$r_{p,t} = \frac{1}{N} \sum_{i=1}^{N} [\alpha_p + \gamma_p f(t_m)]$$

as the daily abnormal return due to a manager’s timing performance, where N is the number of trading days in the quarter, and we estimate α_p and γ_p from the two timing models in Equations (2) and (3). For TM, $f(t_m) = t_m^2$; for HM, $f(t_m) = I_t r_m$. Note that in Equation (5) we include the fund’s α_p, which can be interpreted as the cost of implementing the timing strategy. We sort funds in each period in three ways: by α_p in the stock selection model, by $r_{p,t}$ in the two timing models, and we execute a mixed sort by first classifying each fund as either a market timer or a stock picker. We classify a fund as a market timer in a particular quarter if the fund’s timing coefficient is statistically significant. We determine significance using bootstrap standard errors as in Bollen and Busse (2001). We then record the abnormal return for that fund as either α_p or $r_{p,t}$, and sort based on this measure. We do two mixed sorts, one for each timing model. For each sort, we form deciles of funds and then record how the funds in each decile perform in the following period.
Tables 1 and 2 list the average abnormal return of funds in each decile. Table 1 shows the results in the ranking quarter, and Table 2 shows the results in the post-ranking quarter. Note that we calculate the averages both across funds and across time. In Table 1, the top decile exhibits a daily abnormal return from stock selection of 0.0738%, which is quite robust across the different performance models. The bottom decile has an abnormal return from stock selection of 0.0828% per day, again robust across models. These daily abnormal returns are equivalent to 4.76 and 5.08%, respectively over the quarter.5 Since we sort on performance, a large difference between the top and bottom deciles in the ranking quarter is not surprising. We document the variation in the ranking quarter to provide a context for the post-ranking analysis. In the post-ranking quarter, shown in Table 2, the averages are significantly different from zero at the 5% level for the top decile and the bottom five or six deciles, suggesting that performance persists. For stock selection, the top decile’s abnormal

5 We convert estimates of average daily abnormal returns, \(r \), to quarterly returns by computing \((1 + r)^{63} - 1\).
return is 0.0061% per day, whereas the bottom decile’s abnormal return is

-0.0122% per day, corresponding to 0.39 and -0.77%, respectively over the quarter. The results for the timing models are qualitatively similar.

Figure 1 illustrates the day-by-day performance of the top and bottom deciles in the post-ranking quarter using the stock selection model. The top decile generates most of the abnormal return in the first half of the quarter, whereas the bottom decile’s abnormal return declines at a relatively constant rate across the quarter. The latter result is consistent with persistent negative abnormal returns driven by large expenses, which accrue daily. Our results in Tables 1 and 2, as well as the steady decline in the bottom decile’s abnormal return in Figure 1, indicate that the abnormally bad performance of the worst funds persist strongly. Carhart (1997) finds this same result.

To investigate the impact of persistence further, Tables 3 and 4 report the post-ranking daily returns and Sharpe ratios of the deciles using the same quarterly sorting procedures as those used in Tables 1 and 2, as well as a sort based on prior quarter return, which we label \(R_p \). Some previous studies, including Carhart (1997), sort by past return in an effort to

<table>
<thead>
<tr>
<th>Decile</th>
<th>Stock selection, (\alpha_p) (%)</th>
<th>Market timing (%)</th>
<th>Mixed (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TM</td>
<td>HM</td>
<td>TM</td>
</tr>
<tr>
<td>1</td>
<td>0.0061**</td>
<td>0.0040*</td>
<td>0.0039**</td>
</tr>
<tr>
<td>2</td>
<td>0.0006</td>
<td>0.0012</td>
<td>0.0014</td>
</tr>
<tr>
<td>3</td>
<td>-0.0003</td>
<td>0.0002</td>
<td>-0.0001</td>
</tr>
<tr>
<td>4</td>
<td>-0.0001</td>
<td>-0.0002</td>
<td>-0.0011</td>
</tr>
<tr>
<td>5</td>
<td>-0.0034**</td>
<td>-0.0023</td>
<td>-0.0041**</td>
</tr>
<tr>
<td>6</td>
<td>-0.0035**</td>
<td>-0.0042**</td>
<td>-0.0045**</td>
</tr>
<tr>
<td>7</td>
<td>-0.0054**</td>
<td>-0.0069**</td>
<td>-0.0046**</td>
</tr>
<tr>
<td>8</td>
<td>-0.0055**</td>
<td>-0.0056**</td>
<td>-0.0059**</td>
</tr>
<tr>
<td>9</td>
<td>-0.0075**</td>
<td>-0.0075**</td>
<td>-0.0079**</td>
</tr>
<tr>
<td>10</td>
<td>-0.0122**</td>
<td>-0.0123**</td>
<td>-0.0120**</td>
</tr>
<tr>
<td>Average</td>
<td>-0.0031</td>
<td>-0.0034</td>
<td>-0.0035</td>
</tr>
</tbody>
</table>

The table lists average daily performance estimates during the post-ranking period for deciles of funds sorted according to the performance estimates during the ranking period. We base the stock selection model performance rankings on \(\alpha_p \) estimated from the four-factor model,

\[
\alpha_p = \sum_{k=1}^{4} \beta_p \rho_{k,t} + \epsilon_{p,t}.
\]

We base the timing model rankings on the average \(\alpha_p + \gamma_p f(r_{m,t}) \) from the TM and HM market timing models,

\[
\alpha_p = \sum_{k=1}^{4} \beta_p \rho_{k,t} + \gamma_p f(r_{m,t}) + \epsilon_{p,t},
\]

where \(f(r_{m,t}) = r_{m,t}^2 \) for TM, and \(f(r_{m,t}) = \log r_{m,t} \) for HM. The mixed rankings use the timing model \(\alpha_p + \gamma_p f(r_{m,t}) \) when the \(\gamma_p \) is statistically significant at the 5% level and otherwise use the \(\alpha_p \) from the stock selection model. We assess the statistical significance of the \(\gamma_p \) using bootstrap standard errors. The table shows the average performance estimates during the following quarterly post-ranking period. * and ** indicate two-tailed significance at the 5 and 1% levels, respectively. The sample consists of 230 mutual funds. The sample period is from January 2, 1985 to December 29, 1995.
Mutual Fund Performance

Figure 1
Cumulative abnormal returns
The figure shows cumulative average abnormal returns during a one-quarter post-ranking period for the top and bottom deciles of funds sorted according to \(a_p \) during a one-quarter ranking period. We estimate \(a_p \) with the four-factor model,

\[
r_{pt} = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{kt} + \epsilon_{pt}.
\]

The sample consists of 230 mutual funds. The sample period is from January 2, 1985 to December 29, 1995.

Table 3
Post-ranking period performance deciles: Total returns

<table>
<thead>
<tr>
<th>Decile</th>
<th>Returns, (R_p) (%)</th>
<th>Stock selection, (\alpha_p) (%)</th>
<th>Market timing (%)</th>
<th>Mixed (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>TM</td>
<td>HM</td>
</tr>
<tr>
<td>1</td>
<td>0.0553</td>
<td>0.0585</td>
<td>0.0571</td>
<td>0.0568</td>
</tr>
<tr>
<td>2</td>
<td>0.0543</td>
<td>0.0538</td>
<td>0.0537</td>
<td>0.0549</td>
</tr>
<tr>
<td>3</td>
<td>0.0541</td>
<td>0.0541</td>
<td>0.0560</td>
<td>0.0549</td>
</tr>
<tr>
<td>4</td>
<td>0.0563</td>
<td>0.0555</td>
<td>0.0559</td>
<td>0.0544</td>
</tr>
<tr>
<td>5</td>
<td>0.0543</td>
<td>0.0565</td>
<td>0.0569</td>
<td>0.0553</td>
</tr>
<tr>
<td>6</td>
<td>0.0553</td>
<td>0.0543</td>
<td>0.0535</td>
<td>0.0522</td>
</tr>
<tr>
<td>7</td>
<td>0.0545</td>
<td>0.0534</td>
<td>0.0538</td>
<td>0.0545</td>
</tr>
<tr>
<td>8</td>
<td>0.0545</td>
<td>0.0550</td>
<td>0.0523</td>
<td>0.0546</td>
</tr>
<tr>
<td>9</td>
<td>0.0524</td>
<td>0.0520</td>
<td>0.0542</td>
<td>0.0548</td>
</tr>
<tr>
<td>10</td>
<td>0.0538</td>
<td>0.0517</td>
<td>0.0512</td>
<td>0.0524</td>
</tr>
<tr>
<td>Average</td>
<td>0.0545</td>
<td>0.0545</td>
<td>0.0545</td>
<td>0.0545</td>
</tr>
</tbody>
</table>

The table lists average daily total returns during quarterly post-ranking periods for deciles of funds sorted according to performance estimates during the quarterly ranking period. The first column represents rankings based on return, \(R_p \). We base the stock selection model performance rankings on \(\alpha_p \) estimated from the four-factor model,

\[
r_{pt} = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{kt} + \epsilon_{pt}.
\]

We base the timing model rankings on the average \(\alpha_p + \gamma_p f(r_{mt}) \) from the TM and HM market timing models,

\[
r_{pt} = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{kt} + \gamma_p f(r_{mt}) + \epsilon_{pt},
\]

where \(f(r_{mt}) = r_{mt}^2 \) for TM, and \(f(r_{mt}) = I_t r_{mt} \) for HM. The mixed rankings use the timing model \(\alpha_p + \gamma_p f(r_{mt}) \) when the \(\gamma_p \) is statistically significant at the 5% level and otherwise use the \(\alpha_p \) from the stock selection model. We assess the statistical significance of the \(\gamma_p \) using bootstrap standard errors. This table shows the average daily total returns during the quarterly post-ranking period. The sample consists of 230 mutual funds. The sample period is from January 2, 1985 to December 29, 1995.
classify funds using relatively short measurement windows in conjunction with monthly data. Using both sorting procedures will provide some insight regarding why our results differ from those reported in previous studies. In Table 3, we see relatively little difference across the deciles when ranking by \(\text{Rp} \). The top decile has a 0.0553% daily return in the post-ranking quarter, whereas the bottom decile has a 0.0538% daily return. When ranking on \(\alpha_p \), by contrast, the top decile has a daily return of 0.0585% versus 0.0517% for the bottom decile. Table 4 reports the Sharpe ratios of the deciles in the post-ranking quarter. Again, the sort based on return results in little difference across deciles in the post-ranking quarter, 0.0652 for the top decile versus 0.0624 for the bottom. The sort based on \(\alpha_p \), however, results in a Sharpe ratio of 0.0707 for the top decile and 0.0574 for the bottom. This result indicates that the top decile, as ranked by abnormal return, appears to produce a superior risk-return profile.

One interesting point to make given the results of Tables 1–4 is that the raw returns of the top and bottom deciles in the post-ranking quarter do not vary nearly as much as the abnormal returns of the top and bottom deciles. When sorting on stock selection, for example, the

<table>
<thead>
<tr>
<th>Decile</th>
<th>Returns, (\text{Rp})</th>
<th>Stock selection, (\alpha_p)</th>
<th>Market timing</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{Rp})</td>
<td>(\alpha_p)</td>
<td>TM</td>
<td>HM</td>
</tr>
<tr>
<td>1</td>
<td>0.0652</td>
<td>0.0707</td>
<td>0.0697</td>
<td>0.0685</td>
</tr>
<tr>
<td>2</td>
<td>0.0683</td>
<td>0.0680</td>
<td>0.0670</td>
<td>0.0687</td>
</tr>
<tr>
<td>3</td>
<td>0.0645</td>
<td>0.0648</td>
<td>0.0667</td>
<td>0.0673</td>
</tr>
<tr>
<td>4</td>
<td>0.0673</td>
<td>0.0679</td>
<td>0.0691</td>
<td>0.0647</td>
</tr>
<tr>
<td>5</td>
<td>0.0649</td>
<td>0.0690</td>
<td>0.0700</td>
<td>0.0683</td>
</tr>
<tr>
<td>6</td>
<td>0.0676</td>
<td>0.0656</td>
<td>0.0646</td>
<td>0.0636</td>
</tr>
<tr>
<td>7</td>
<td>0.0656</td>
<td>0.0635</td>
<td>0.0622</td>
<td>0.0652</td>
</tr>
<tr>
<td>8</td>
<td>0.0647</td>
<td>0.0626</td>
<td>0.0612</td>
<td>0.0621</td>
</tr>
<tr>
<td>9</td>
<td>0.0601</td>
<td>0.0611</td>
<td>0.0637</td>
<td>0.0633</td>
</tr>
<tr>
<td>10</td>
<td>0.0624</td>
<td>0.0574</td>
<td>0.0566</td>
<td>0.0592</td>
</tr>
<tr>
<td>Average</td>
<td>0.0651</td>
<td>0.0651</td>
<td>0.0651</td>
<td>0.0651</td>
</tr>
</tbody>
</table>

The table lists average daily Sharpe ratios during quarterly post-ranking periods for deciles of funds sorted according to performance estimates during the quarterly ranking period. The first column represents rankings based on return, \(\text{Rp} \). We base the stock selection model performance rankings on \(\alpha_p \) estimated from the four-factor model,

\[
r_{p,t} = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{k,t} + \varepsilon_{p,t}
\]

We base the timing model rankings on the average \(\alpha_p + \gamma_p f(r_{m,t}) \) from the TM and HM market timing models,

\[
r_{p,t} = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{k,t} + \gamma_p f(r_{m,t}) + \varepsilon_{p,t}
\]

where \(f(r_{m,t}) = r_{m,t}^2 \) for TM, and \(f(r_{m,t}) = \ln r_{m,t} \) for HM. The mixed rankings use the timing model \(\alpha_p + \gamma_p f(r_{m,t}) \) when the \(\gamma_p \) is statistically significant at the 5% level and otherwise use the \(\alpha_p \) from the stock selection model. We assess the statistical significance of the \(\gamma_p \) using bootstrap standard errors. This table shows the average Sharpe ratios during the quarterly post-ranking period. The sample consists of 230 mutual funds. The sample period is from January 2, 1985 to December 29, 1995.
difference between decile 1 and decile 10 in subsequent post-ranking abnormal returns due to stock selection is 0.0183% on a daily basis, as indicated in Table 2. In contrast, the difference in post-ranking raw returns is only 0.0068%, as listed in Table 3. The reason for this is that the factor loadings of the top and bottom deciles are systematically different. Table 5 shows the average factor loadings in the post-ranking quarter for the funds in the different deciles, sorted by stock selection. The factor loadings are different — the β on the size factor is 0.274 for the top decile, for example, compared to 0.335 for the bottom decile. The conclusion drawn from this analysis is that the superiority of the top decile over the bottom decile is more pronounced when risk-adjusted returns are compared as opposed to raw returns.

To provide additional insight regarding the persistence of stock selection and market timing ability, Table 6 shows the results of the following cross-sectional regression of performance on its lagged value:

$$\text{Perf}_{p,t} = a + b\text{Perf}_{p,t-1} + \epsilon_{p,t}, \quad (6)$$

where $\text{Perf}_{p,t}$ is either raw return or the contribution of active management to fund returns as defined above. A positive slope coefficient would indicate that past performance predicts the following period’s performance. We estimate the regression each quarter and record the time series of parameter estimates. We report the average regression parameter estimates, as well as p-values based on time series standard errors. This application of Fama–MacBeth (1973) inference is motivated by the potential for cross-fund correlation in the residuals of Equation (6) resulting from any systematic misspecification that would affect estimates of

<table>
<thead>
<tr>
<th>Decile</th>
<th>β_{sm}</th>
<th>β_{smb}</th>
<th>β_{hml}</th>
<th>β_{mom}</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.045</td>
<td>0.274</td>
<td>-0.287</td>
<td>0.113</td>
<td>0.829</td>
</tr>
<tr>
<td>2</td>
<td>0.990</td>
<td>0.172</td>
<td>-0.189</td>
<td>0.065</td>
<td>0.859</td>
</tr>
<tr>
<td>3</td>
<td>0.968</td>
<td>0.137</td>
<td>-0.166</td>
<td>0.072</td>
<td>0.864</td>
</tr>
<tr>
<td>4</td>
<td>0.961</td>
<td>0.138</td>
<td>-0.127</td>
<td>0.059</td>
<td>0.871</td>
</tr>
<tr>
<td>5</td>
<td>0.961</td>
<td>0.117</td>
<td>-0.118</td>
<td>0.054</td>
<td>0.874</td>
</tr>
<tr>
<td>6</td>
<td>0.967</td>
<td>0.121</td>
<td>-0.114</td>
<td>0.047</td>
<td>0.872</td>
</tr>
<tr>
<td>7</td>
<td>0.982</td>
<td>0.145</td>
<td>-0.121</td>
<td>0.051</td>
<td>0.868</td>
</tr>
<tr>
<td>8</td>
<td>0.974</td>
<td>0.151</td>
<td>-0.115</td>
<td>0.026</td>
<td>0.863</td>
</tr>
<tr>
<td>9</td>
<td>1.006</td>
<td>0.203</td>
<td>-0.137</td>
<td>0.054</td>
<td>0.850</td>
</tr>
<tr>
<td>10</td>
<td>1.055</td>
<td>0.335</td>
<td>-0.200</td>
<td>0.044</td>
<td>0.805</td>
</tr>
<tr>
<td>Average</td>
<td>0.990</td>
<td>0.178</td>
<td>-0.157</td>
<td>0.058</td>
<td>0.856</td>
</tr>
</tbody>
</table>

The table lists average factor loadings estimated from the four-factor model,

$$r_{p,t} = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{k,t} + \epsilon_{p,t},$$

during quarterly post-ranking periods for deciles of funds sorted according to α_p during the ranking period. The sample consists of 230 mutual funds. The sample period is from January 2, 1985 to December 29, 1995.
performance. In the context of the timing models, for example, changes in market skewness would affect the general convexity between fund returns and the market return. Consistent with the Jagannathan and Korajczyk (1986) conjecture, this could lead to changes in the measured timing performance of all funds. The Fama–MacBeth standard errors capture this effect.

Table 6 shows that the average slope of the cross-sectional regressions is positive and significant for all of the risk-adjusted performance measures but insignificant when we sort by return. The individual slope coefficients

<table>
<thead>
<tr>
<th>Returns, R_p (%)</th>
<th>Stock selection, α_p (%)</th>
<th>Market timing, TM (%)</th>
<th>Market timing, HM (%)</th>
<th>Mixed, TM (%)</th>
<th>Mixed, HM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.044</td>
<td>-0.002</td>
<td>-0.003</td>
<td>-0.002</td>
<td>-0.002</td>
</tr>
<tr>
<td>p-value</td>
<td>0.006</td>
<td>0.213</td>
<td>0.160</td>
<td>0.126</td>
<td>0.164</td>
</tr>
<tr>
<td>B</td>
<td>0.036</td>
<td>0.122</td>
<td>0.118</td>
<td>0.117</td>
<td>0.118</td>
</tr>
<tr>
<td>p-value</td>
<td>.502</td>
<td>0.000</td>
<td>0.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>R^2</td>
<td>0.101</td>
<td>0.038</td>
<td>0.034</td>
<td>0.032</td>
<td>0.034</td>
</tr>
</tbody>
</table>

The table shows results of cross-sectional regressions of fund performance during one quarterly period on fund performance during the previous quarterly period,

$$\text{Perf}_{p,t} = a + b\text{Perf}_{p,t-1} + e_{p,t}.$$

The first column represents rankings based on return, R_p. We base the stock selection model performance rankings on α_p estimated from the four-factor model,

$$r_p = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_k,t + e_{p,t}.$$

We base the timing model rankings on the average $\alpha_p + \gamma_p f(r_{m,t})$ from the TM and HM market timing models,

$$r_p,t = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_k,t + \gamma_p f(r_{m,t}) + e_{p,t},$$

where $f(r_{m,t}) = r_m,t^2$ for TM, and $f(r_{m,t}) = r_{m,t}$ for HM. The mixed rankings use the timing model $\alpha_p + \gamma_p f(r_{m,t})$ when the γ_p is statistically significant at the 5% level and otherwise use the α_p from the stock selection model. We assess the statistical significance of the γ_p using bootstrap standard errors. We estimate a cross-sectional regression for each pair of successive quarterly periods. Listed first in the panels are the average regression parameters for the 43 quarterly regressions. The p-values are estimated in the spirit of Fama and MacBeth (1973) using the time series standard errors of the parameter estimates. Listed next are the fractions of slope coefficients that are positive (negative) and significant at the 10, 5, and 1% levels. The sample consists of 230 mutual funds. The sample period is from January 2, 1985 to December 29, 1995.
are positive in 70–80% of the quarters for all of the risk-adjusted performance measures, but only in 53.5% of the quarters when we sort by return. In addition, the slope is significantly positive using OLS standard errors several times as often as it is significantly negative for the risk-adjusted performance measures. When we sort by return, however, the slope is significantly negative almost as often as it is significantly positive. These results demonstrate again that sorting by return as opposed to abnormal return results in substantially different post-ranking performance, apparently by selecting different funds. To support this conjecture, we compare the sort based on return to the sort based on abnormal return by computing the fraction of funds placed in the same decile. We find that, regardless of the model of abnormal return, only one-fourth of the mutual funds in our sample were placed in the same decile by both sorts. In contrast, when comparing sorts based on any two models of abnormal return, three-fourths of the funds were placed in the same decile.

3.2 Specification and robustness tests
This section reports the results of four tests designed to identify sources of spurious inference. First, we test whether the daily four-factor model used to identify stock selection ability adequately controls for the size and momentum anomalies. We construct simulated portfolios that follow a strategy of investing in particular quintiles of size and momentum stocks, and we then estimate the abnormal return of these simulated portfolios. If the four-factor model is well-specified, it should generate α_ps that are close to zero. To compare the results of these simulated portfolios to the actual mutual funds, we also subtract reasonable estimates of management fees and trading costs from the returns of the simulated portfolios. A well-specified factor model should then generate negative abnormal returns, in contrast to the positive 39 basis points earned by the top decile of actual mutual funds in our sample.

To create the simulated portfolios, we sort stocks in the CRSP NYSE/AMEX/Nasdaq database each quarter during our sample period into quintiles based on prior quarter return and market capitalization. We form 25 value-weighted portfolios based on the intersections of these two sorts. We record daily returns and concatenate over our sample period. We adjust returns for expenses two ways. We deduct a daily expense ratio equivalent to 1.10% per year, which is the average expense ratio of the funds in our sample. Also, we estimate trading costs using the results of Keim and Madhavan (1998), who analyze a dataset of institutional trades. They estimate trading costs broken down by market capitalization quintiles, finding that in their sample period of January 1991–March 1993, total round-trip costs range from 0.49% for the largest

6 We thank the referees for suggesting the four tests in Section 3.2.
stocks to 4.79% for the smallest. We assume 100% annual turnover in the simulated portfolios and deduct the appropriate size quintile-based trading costs from the returns of the portfolios each year. This procedure likely underestimates actual trading costs, since the annual turnover of the simulated portfolios is greater than 100%.7

Table 7 lists the quarterly abnormal return of these simulated portfolios. The portfolio \(\alpha_p \) generally increases with momentum (i.e., portfolios that purchase past winners outperform portfolios that buy past losers) and with firm size. With the exception of two portfolios consisting of large stocks and low prior quarter returns, all of the portfolio \(\alpha_p \)s are negative. As listed in Table 5, the top decile mutual funds in our sample have higher SMB and momentum factor loadings than the median fund, which suggest that they invest in relatively small stocks that have recently had relatively high returns. An appropriate comparison for the top decile mutual funds in our sample, then, are the simulated portfolios in the top two momentum quintiles and smallest two size quintiles. These quintiles all have negative \(\alpha_p \) estimates. Our results indicate that misspecification in our four-factor model cannot explain the positive abnormal returns of the top decile of funds. Also, when we repeat the momentum size quintile analysis using monthly data, the results are very similar to those in Table 7, which suggests that the daily factor specification effectively corrects for stale daily stock prices.

We sort stocks into quintiles quarterly on the basis of prior quarter return and market capitalization. We construct 25 simulated portfolios by value-weighting each stock that falls into a given intersection of the momentum and size sorts. We concatenate daily returns of the simulated portfolios over our sample period, and adjust to reflect expense ratios and transaction costs. Daily expense ratios are equivalent to 1.10% per year, the average annual expense ratio of the funds in our sample. We estimate transaction costs by size quintile using Keim and Madhavan (1998) and assume 100% turnover per year in the simulated portfolios. The table lists average abnormal quarterly returns based on \(\alpha_p \) estimated from the four-factor model,

\[
r_{p,t} = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{k,t} + \epsilon_{p,t}.
\]

The sample period is from January 2, 1985 to December 29, 1995.

7 The actual turnover rate associated with a size and/or momentum strategy depends on which quintiles it encompasses and how far a stock can drift away from a particular size momentum portfolio before it is replaced.
We explore one additional piece of evidence regarding the daily factor model’s effectiveness at controlling for momentum strategies. If we sort on the momentum factor loading in the ranking period (instead of sorting on the abnormal return), the top decile abnormal return is negative during the ranking quarter and 1.3 basis points during the post-ranking quarter, well below the 39 basis points associated with an abnormal return sort. This result suggests that the daily factor model provides a sufficiently high hurdle for funds that pursue momentum strategies.

Our second test investigates the robustness of the results to alternative momentum factors. The results thus far use a value-weighted momentum factor formed monthly based on returns over the prior year (although not including the returns during the last month), as is standard in the literature. However, a fund manager could pursue a momentum strategy based on shorter past return horizons. We therefore generate additional value-weighted momentum factors formed monthly using measurement horizons of six, three, and one month. Here, we do not skip a month between the ranking and formation dates, since the motivation for these alternative factors is that momentum is a short-lived phenomenon. We also create a momentum factor formed weekly based on the prior week’s returns and a momentum factor formed daily based on the prior day’s returns. We estimate the performance of the mutual funds in our sample quarterly as before, both for ranking and holding purposes.

Table 8 lists the results. In all cases, the top decile generates significant, positive abnormal returns in the post-ranking quarter. The

<table>
<thead>
<tr>
<th>Decile</th>
<th>12-mo (%)</th>
<th>t-stat</th>
<th>6-mo (%)</th>
<th>t-stat</th>
<th>3-mo (%)</th>
<th>t-stat</th>
<th>1-mo (%)</th>
<th>t-stat</th>
<th>1-wk (%)</th>
<th>t-stat</th>
<th>1-day (%)</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0061</td>
<td>3.17</td>
<td>0.0085</td>
<td>4.11</td>
<td>0.0084</td>
<td>3.86</td>
<td>0.0107</td>
<td>5.08</td>
<td>0.0070</td>
<td>2.89</td>
<td>0.0064</td>
<td>2.80</td>
</tr>
<tr>
<td>2</td>
<td>0.0006</td>
<td>0.40</td>
<td>0.0038</td>
<td>2.50</td>
<td>0.0038</td>
<td>2.49</td>
<td>0.0056</td>
<td>3.66</td>
<td>0.0045</td>
<td>2.38</td>
<td>0.0037</td>
<td>2.17</td>
</tr>
<tr>
<td>3</td>
<td>-0.0003</td>
<td>-0.24</td>
<td>0.0005</td>
<td>0.34</td>
<td>0.0019</td>
<td>1.21</td>
<td>0.0014</td>
<td>0.89</td>
<td>0.0036</td>
<td>1.98</td>
<td>0.0012</td>
<td>0.76</td>
</tr>
<tr>
<td>4</td>
<td>-0.0001</td>
<td>-0.09</td>
<td>-0.0006</td>
<td>-0.43</td>
<td>0.0021</td>
<td>1.37</td>
<td>0.0021</td>
<td>1.55</td>
<td>-0.0014</td>
<td>-0.88</td>
<td>-0.0009</td>
<td>-0.54</td>
</tr>
<tr>
<td>5</td>
<td>-0.0034</td>
<td>-2.69</td>
<td>-0.0115</td>
<td>-1.13</td>
<td>-0.0006</td>
<td>-0.44</td>
<td>0.0022</td>
<td>1.65</td>
<td>0.0029</td>
<td>1.79</td>
<td>-0.0039</td>
<td>-2.67</td>
</tr>
<tr>
<td>6</td>
<td>-0.0035</td>
<td>-2.63</td>
<td>-0.0029</td>
<td>-2.07</td>
<td>-0.0020</td>
<td>-1.52</td>
<td>-0.0031</td>
<td>-2.18</td>
<td>-0.0015</td>
<td>-0.95</td>
<td>-0.0013</td>
<td>-0.89</td>
</tr>
<tr>
<td>7</td>
<td>-0.0054</td>
<td>-3.94</td>
<td>-0.0047</td>
<td>-3.50</td>
<td>-0.0023</td>
<td>-1.68</td>
<td>-0.0025</td>
<td>-1.71</td>
<td>-0.0019</td>
<td>-1.31</td>
<td>-0.0013</td>
<td>-0.88</td>
</tr>
<tr>
<td>8</td>
<td>-0.0055</td>
<td>-3.92</td>
<td>-0.0056</td>
<td>-3.97</td>
<td>-0.0050</td>
<td>-3.50</td>
<td>-0.0033</td>
<td>-2.36</td>
<td>-0.0042</td>
<td>-2.44</td>
<td>-0.0030</td>
<td>-2.01</td>
</tr>
<tr>
<td>9</td>
<td>-0.0075</td>
<td>-4.76</td>
<td>-0.0057</td>
<td>-3.85</td>
<td>-0.0041</td>
<td>-2.74</td>
<td>-0.0054</td>
<td>-3.77</td>
<td>-0.0033</td>
<td>-1.83</td>
<td>-0.0068</td>
<td>-4.16</td>
</tr>
<tr>
<td>10</td>
<td>-0.0122</td>
<td>-6.22</td>
<td>-0.0122</td>
<td>-6.24</td>
<td>-0.0110</td>
<td>-5.68</td>
<td>-0.0118</td>
<td>-6.04</td>
<td>-0.0114</td>
<td>-5.11</td>
<td>-0.0109</td>
<td>-5.08</td>
</tr>
</tbody>
</table>

The table lists average daily performance estimates during quarterly post-ranking periods for deciles of funds sorted according to α_p during quarterly ranking periods. We estimate α_p with the four-factor model,

$$r_{p,t} = \alpha_p + \sum_{k=1}^{4} \beta_{p,k} f_{k,t} + \epsilon_{p,t}.$$

The columns show the results for alternative momentum factors. All are value-weighted indices created by subtracting the return of 30% of stocks with the lowest returns from the return of 30% of stocks and the highest returns as measured over horizons ranging from 12 months to 1 day. We re-form the factors constructed from horizons of 1 month or greater each month. We re-form the weekly factor weekly. We re-form the daily factor daily. The sample period is from January 2, 1985 to December 29, 1995.
measured performance is higher using the higher frequency momentum factors. With a one-month factor, for example, the daily α_p is 0.0107%, which is equivalent to 68 basis points per quarter. These results indicate that our inference does not hinge on our choice of momentum factor, which is consistent in its construction with prior studies. Furthermore, when we use equal-weighted momentum factors [similar to Carhart (1997)] instead of value-weighted, the top decile abnormal returns increase across all momentum factor horizons shown in Table 8.

The third test examines whether the cross-autocorrelation results in Lo and MacKinlay (1990) generate the abnormal returns we find in the top decile of mutual funds. Lo and MacKinlay find that the returns of small stocks lag the returns of large stocks at a weekly horizon. Although they do not identify an economic reason for this result, the result is relevant for our study because it would be incorrect to interpret abnormal returns as evidence of stock picking or market timing ability if the cross-autocorrelation anomaly generates the abnormal returns. To proceed, we follow the procedure in Lo and MacKinlay, establishing size quintile breakpoints in the middle of our sample. We then compute quarterly portfolio returns of the size quintiles, and compute all possible lead–lag correlations. None of the cross-autocorrelations are significant using the sample statistic derived in Lo and MacKinlay. This result suggests that the mutual fund managers in the top decile of funds are not generating abnormal returns by following a strategy that seeks to exploit cross-autocorrelations at a quarterly frequency.

Our fourth test checks to see whether the abnormal returns we document are the result of bid/ask bounce or some other microstructure effect that may distort measurement when using daily data. To do this, we conduct an experiment in which we rank quarterly using daily returns based on the stock selection model. We then analyze performance in the post-ranking quarters using monthly returns. In order to allow for time-varying factor loadings, we estimate factor loadings in the post-ranking quarter using daily returns. To measure abnormal performance in the post-ranking quarters, we calculate each month the equal-weighted average return of the funds in the top decile using monthly data and subtract their expected return. We compute the expected return by taking the sum of the products of the factor loadings, which are an equal-weighted average across funds in the top decile and the factor returns, again using monthly data. This procedure measures performance using monthly data while at the same time allowing for time-varying factor loadings. The time series average of the abnormal return calculated using this procedure is 44 basis points per quarter with a t-statistic of 1.859, almost identical to our original results. Thus, our results do not appear to be caused by microstructure effects. Together with the other results in this section, these
results suggest that the top decile’s abnormal return detected at the quarterly frequency is not spurious.

3.3 Economic significance
Thus far, we have provided evidence that the relative risk-adjusted performance of funds persists. The top decile of funds generates, on average, a statistically significant abnormal return of 25–39 basis points per quarter out of sample, depending on the model of performance.

To put the magnitude of these results in perspective, note that Carhart et al. (2002) document year-end one-day excess returns that range from 25 basis points for large-cap value funds to 174 basis points for small-cap growth funds. These returns are partially reversed the next day indicating that significant temporary price pressure is exerted on stocks the funds own at the end of the year. The authors link this pattern to incentives in the mutual fund industry. Qualitatively similar results are obtained for quarter-ends other than the year-end, although the magnitudes are smaller. The price pressure findings of Carhart et al. are likely not responsible for the persistence we document, since reversals would generate mean reversion in performance. However, it may be the case that some mutual fund holdings are affected by general price pressure, unrelated to year-end and quarter-end gaming behavior, that leads to serial correlation of performance at the quarterly frequency. In the next section, we explore the relation between performance and observational frequency in greater depth.

Regardless of the cause of the abnormal returns, it is valid to ask whether an investor could exploit the persistence we document. Consider an individual investor’s strategy of “chasing winners” wherein he selects his portfolio of mutual funds based on prior quarter performance.\(^8\) Each time an investor alters his portfolio of funds, front-end or deferred loads could reduce the investor’s realized return. According to Reid and Rea (2003), the average front-end sales charge for stock and bond funds was 1.1% in 2001, which would clearly eliminate the abnormal return we document. Presumably, one could restrict attention to no-load funds, although this would eliminate a large number of candidates. Further, each time an investor removes a fund from his portfolio, the raw holding period return (not abnormal return) is taxable. This also would affect an investor’s realized return. To avoid the tax disadvantage of the strategy, one could use a tax-deferred retirement account; however, employer-based retirement plans typically offer a limited selection of mutual fund companies for their employees. Investors could also face redemption fees.

\(^8\)An investor would also face a lag between when the daily data are available and when the fund selection would occur before he could begin to capture the post-ranking abnormal return.
that many mutual fund companies levy on investors who redeem shares after short holding periods.

4. Short-Term Versus Long-Term Performance

Our results stand in contrast to existing evidence on mutual fund persistence. Carhart (1997) reports a monthly top-decile four-factor α_p of -0.12%, which is statistically insignificant when sorting by prior year return. When he sorts by prior three-year α_p, Carhart finds a top decile α_p of 0.02% per month — again statistically insignificant. Why are our results so different? One possibility is that we use a substantially different procedure to sort funds and measure performance. We sort by prior quarter risk-adjusted performance. This method is not possible with the monthly data used by Carhart. Hence, one possible source of the difference is that our procedure ranks funds differently than Carhart’s procedure. Tables 3 and 4 provide some evidence to support this explanation: the difference between the top and bottom deciles in our sample narrows substantially when we sort based on return rather than on abnormal return. Furthermore, we measure post-ranking performance by abnormal return in the following quarter. In contrast, Carhart estimates post-ranking performance using a concatenated series of post-ranking returns, which does not allow for time variation in factor risk loadings. Hence, a second potential source of the difference is that we measure post-ranking performance differently than Carhart.

To investigate the impact of the differences between our methodology and Carhart’s, we rerun our analysis using a variety of measurement windows, return frequencies, and performance measures. Tables 9–12 list the results for the top decile of funds and the stock selection model. Tables 9 and 10 list the results when we measure performance over a post-ranking period equal in length to the measurement period, which is the procedure used in Tables 1 and 2. Table 9 lists the results when we sort funds by abnormal return. Listed below each quarterly average abnormal return are t-statistics estimated in the spirit of Fama and MacBeth (1973), using the standard error of the time series of parameter estimates. Using daily data and quarterly periods, we find that the top decile generates a statistically significant quarterly average abnormal return of 39 basis points in the post-ranking quarter. This is equivalent to the result listed in Table 2. As we increase the measurement period to one and three years, the quarterly average abnormal return drops to 7 and 5 basis points, respectively — neither statistically significant. The results for the timing models are similar and for the sake of brevity, we do not report them.

9 To increase the number of tests, we repeat the three-year measurement interval analysis each year, rather than every three years.
here. We interpret these results as evidence that superior performance is a short-lived phenomenon that can only be detected using relatively short measurement windows. When we use weekly or monthly returns, the top decile of funds does not exhibit superior performance. This finding is

Table 9

Top decile post-ranking period performance by length of ranking and post-ranking period: Time series averages — sorting on abnormal return

<table>
<thead>
<tr>
<th>Measurement interval</th>
<th>Daily</th>
<th>Weekly</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarterly</td>
<td>0.385%</td>
<td>(3.165)</td>
<td></td>
</tr>
<tr>
<td>1-yr</td>
<td>0.070%</td>
<td>0.034%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.514)</td>
<td>(0.238)</td>
<td></td>
</tr>
<tr>
<td>3-yr</td>
<td>0.049%</td>
<td>-0.133%</td>
<td>-0.117%</td>
</tr>
<tr>
<td></td>
<td>(0.518)</td>
<td>(-1.382)</td>
<td>(-1.002)</td>
</tr>
</tbody>
</table>

The table lists average abnormal quarterly returns during post-ranking periods for the top decile of funds sorted by abnormal return during ranking periods. We measure abnormal returns by \(\alpha_p \) estimated from the four-factor stock selection model,

\[
\alpha_p = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{kt} + \varepsilon_{pt}.
\]

We estimate post-ranking abnormal returns separately over each post-ranking period. For the quarterly measurement intervals, we rank each quarter. For the one- and three-year measurement intervals, we rank each year. In this table, the ranking and post-ranking periods are the same duration (i.e., one quarter, one year, or three years). Listed in parentheses below each average abnormal quarterly return are \(t \)-statistics estimated in the spirit of Fama and MacBeth (1973) using the time series standard errors of the parameter estimates. The sample consists of 230 mutual funds. The sample period is from January 2, 1985 to December 29, 1995.

Table 10

Top decile post-ranking period performance by length of ranking and post-ranking period: Time series averages — sorting on return

<table>
<thead>
<tr>
<th>Measurement interval</th>
<th>Daily</th>
<th>Weekly</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarterly</td>
<td>0.156%</td>
<td>(1.180)</td>
<td></td>
</tr>
<tr>
<td>1-yr</td>
<td>-0.032%</td>
<td>-0.069%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.259)</td>
<td>(-0.521)</td>
<td></td>
</tr>
<tr>
<td>3-yr</td>
<td>-0.102%</td>
<td>-0.185%</td>
<td>-0.056%</td>
</tr>
<tr>
<td></td>
<td>(-1.045)</td>
<td>(-1.986)</td>
<td>(-0.508)</td>
</tr>
</tbody>
</table>

The table lists average abnormal quarterly returns during post-ranking periods for the top decile of funds sorted by return during ranking periods. We measure abnormal returns by \(\alpha_p \) estimated from the four-factor stock selection model,

\[
\alpha_p = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{kt} + \varepsilon_{pt}.
\]

We estimate post-ranking abnormal returns separately over each post-ranking period. For the quarterly measurement intervals, we rank each quarter. For the one- and three-year measurement intervals, we rank each year. In this table, the ranking and post-ranking periods are the same duration (i.e., one quarter, one year, or three years). Listed in parentheses below each average abnormal quarterly return are \(t \)-statistics estimated in the spirit of Fama and MacBeth (1973) using the time series standard errors of the parameter estimates. The sample consists of 230 mutual funds. The sample period is from January 2, 1985 to December 29, 1995.
Table 11
Top decile post-ranking period performance by length of ranking and post-ranking period:
Concatenated series—sorting on abnormal return

<table>
<thead>
<tr>
<th>Measurement interval</th>
<th>Daily</th>
<th>Weekly</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarterly</td>
<td>0.092%</td>
<td>(0.261)</td>
<td></td>
</tr>
<tr>
<td>1-yr</td>
<td>0.336%</td>
<td>0.339%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.974)</td>
<td>(0.998)</td>
<td></td>
</tr>
<tr>
<td>3-yr</td>
<td>−0.048%</td>
<td>−0.228%</td>
<td>−0.347%</td>
</tr>
<tr>
<td></td>
<td>(−0.157)</td>
<td>(−0.751)</td>
<td>(−1.047)</td>
</tr>
</tbody>
</table>

The table lists average abnormal quarterly returns during post-ranking periods for the top decile of funds sorted by abnormal return during ranking periods. We measure abnormal returns by α_p estimated from the four-factor stock selection model,

$$r_{p,t} = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{k,t} + \varepsilon_{p,t}.$$

We estimate post-ranking abnormal returns once over the entire sample using a concatenated post-ranking return series. For the quarterly measurement intervals, we rank each quarter. For the one- and three-year measurement intervals, we rank each year. For the one-quarter and one-year measurement intervals in this table, the ranking and post-ranking periods are the same duration (i.e., one quarter, one year, or three years). The three-year rows correspond to a three-year ranking period and a one-year post-ranking period, which gives a single, continuous, concatenated, post-ranking period return series. Here, the t-statistics are standard OLS (listed in parentheses). The sample consists of 230 mutual funds. The sample period is from January 2, 1985 to December 29, 1995.

Table 12
Top decile post-ranking period performance by length of ranking and post-ranking period: Concatenated series—sorting on return

<table>
<thead>
<tr>
<th>Measurement interval</th>
<th>Stock selection, α_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarterly</td>
<td>−0.279%</td>
</tr>
<tr>
<td></td>
<td>(−0.659)</td>
</tr>
<tr>
<td>1-yr</td>
<td>0.139%</td>
</tr>
<tr>
<td></td>
<td>(0.405)</td>
</tr>
<tr>
<td>3-yr</td>
<td>−0.487%</td>
</tr>
<tr>
<td></td>
<td>(−1.357)</td>
</tr>
</tbody>
</table>

The table lists average abnormal quarterly returns during post-ranking periods for the top decile of funds sorted by return during ranking periods. We measure abnormal returns by α_p estimated from the four-factor stock selection model,

$$r_{p,t} = \alpha_p + \sum_{k=1}^{4} \beta_{pk} r_{k,t} + \varepsilon_{p,t}.$$

We estimate post-ranking abnormal returns once over the entire sample using a concatenated post-ranking monthly return series. For the quarterly measurement intervals, we rank each quarter. For the one- and three-year measurement intervals, we rank each year. For the one-quarter and one-year measurement intervals in this table, the ranking and post-ranking periods are the same duration (i.e., one quarter, one year, or three years). The three-year rows correspond to a three-year ranking period and a one-year post-ranking period, which gives a single, continuous, concatenated, post-ranking period return series. Here, the t-statistics are standard OLS (listed in parentheses). The sample consists of 230 mutual funds. The sample period is from January 2, 1985 to December 29, 1995.
consistent with the findings using daily data, since the weekly or monthly data necessitate extending the measurement window.

Table 10 shows the results when we sort mutual funds by return instead of abnormal return. Carhart (1997) emphasizes a sort based on return because his monthly data preclude efficient estimation of abnormal return using measurement windows shorter than three years. When we use daily data and quarter-year horizons, our estimate of post-ranking abnormal return for the top decile shrinks from 39 basis points per quarter when we sort on abnormal return to an insignificant 16 basis points when we sort on return. This difference is consistent with the results in Table 3 and 4, wherein the sort based on return failed to segregate funds by performance in the post-ranking period. We interpret this result as evidence that sorting by return fails to identify top performers. A sort based on return likely correlates to a sort based on risk. When we sort and hold funds for one- or three-year periods, the top decile performance erodes even further and becomes negative.

One additional difference between our methodology and Carhart’s is that we measure performance for the top decile of funds separately over each post-ranking period. That is, we sort at the beginning of the quarter based on last quarter’s performance, and we then estimate performance over the following quarter for each fund in the top decile. Carhart (1997), by contrast, creates a portfolio of the top decile of funds, concatenates the post-ranking annual periods into one 31-year time series, and estimates performance once. Again, his use of monthly returns necessitates this procedure. A potential byproduct of the procedure, however, is distorted inference due to erroneously specifying fixed factor loadings. Tables 11 and 12 show how our results change when we measure post-ranking performance using a concatenated time series. Similar to Tables 9 and 10, we use measurement intervals of one quarter, one year, and three years. In no case is the abnormal return in the post-ranking period statistically significant. Table 11 shows the results when we rank funds based on abnormal return. When we use daily data and quarter-year horizons, the abnormal return of the top decile in the post-ranking quarter is an insignificant 9 basis points. Hence, the concatenation procedure eliminates the measured superior performance, just as the sort based on return does in Table 10. Table 12 shows that when we sort funds by return and measure performance in the post-ranking period using a concatenated series of monthly returns, the abnormal return of the top decile drops to a negative 28 basis points. These results indicate that the main differences between our findings and Carhart’s are attributable to the different ranking

10 The three-year rows in Tables 11 and 12 correspond to a three-year ranking period and a one-year post-ranking period. Using a one-year post-ranking period instead of a three-year post-ranking period in Tables 11 and 12 produces a single, continuous, concatenated return series.
and post-ranking horizons used in our respective studies, as well as the procedure for measuring abnormal return in the post-ranking period.

We have shown that performance persistence vanishes when performance is measured over longer periods. Superior performance appears to be a short-lived phenomenon that is not detectable using annual windows. The short-term nature of performance could be generated by short-term informational advantages that some managers might be able to exploit. Or, as embodied in the model in Berk and Green (2004), the short-term performance could result from the actions of investors who rely on a community of professional fund managers with heterogeneous ability levels. Rational mutual fund investors form beliefs about managerial ability based on past performance, allocating their capital toward those managers who have demonstrated ability. Going forward, abnormal performance erodes due to its decreasing returns to scale and due to the possibility that a manager increases fees.

We have also shown that performance persistence vanishes when performance is measured using a single concatenated series rather than using separate three-month post-ranking periods. An explanation for this phenomenon is based on the difference between conditional and unconditional performance measures.11 Ferson and Schadt (1996) create conditional versions of the standard mutual fund performance regressions used in this article. They model dynamic fund strategies by specifying factor loadings as linear functions of available information, including the dividend yield of the CRSP stock index, the slope of the term structure, and the corporate credit spread. Empirically, Ferson and Schadt find that the performance of mutual fund managers in their sample appears to improve modestly when evaluated using conditional measures instead of unconditional ones.

Our use of unconditional models estimated over nonoverlapping three-month horizons can be viewed as a non-parametric implementation of Ferson and Schadt’s conditional model. We allow strategies (i.e., factor loadings) to change, perhaps as a result of public or proprietary information useful for predicting factor returns, while specifying neither the information sources nor the response of factor loadings to information. To understand how this interpretation can explain the link between performance and horizon, define the abnormal return of fund p, labeled α_p in Equation (1), over quarter q as

$$\alpha_{p,q} = \mu_{p,q} - \sum_{k=1}^{4} \beta_{p,k,q} \mu_{k,q},$$

where $\mu_{p,q}$ and $\mu_{k,q}$ are the average return of fund p and factor k, respectively, and $\beta_{p,k,q}$ is the factor loading of fund p on factor k, during

11 We thank a referee for this explanation.
quarter q. Now consider the expected abnormal return over a sequence of quarters:

$$E[\alpha_{p,q}] = E[\mu_{p,q}] - \sum_{k=1}^{4} E[\beta_{p,k,q} \mu_{k,q}], \quad (8)$$

or

$$E[\alpha_{p,q}] = E[\mu_{p,q}] - \sum_{k=1}^{4} E[\beta_{p,k,q}] E[\mu_{k,q}] - \sum_{k=1}^{4} \text{cov}(\beta_{p,k,q}, \mu_{k,q}), \quad (9)$$

whereas the abnormal return measured once over the entire period is given by

$$\alpha_p = \mu_p - \sum_{k=1}^{4} \beta_{p,k} \mu_k. \quad (10)$$

Now the first two terms on the right-hand side of Equation (9) are approximately equal to the right-hand side of Equation (10), since the average of the three-month factor loadings should be approximately equal to the factor loading estimated over the entire period. Thus, the difference between the expected quarterly abnormal return and the abnormal return estimated once over the entire period is given by

$$E[\alpha_{p,q}] - \alpha_p = -\sum_{k=1}^{4} \text{cov}(\beta_{p,k,q}, \mu_{k,q}). \quad (11)$$

This result implies that short-term abnormal performance can be hidden when performance is measured over a longer horizon if there is negative covariance between quarterly factor loadings and factor returns. We find an average abnormal return of 39 basis points per quarter for the top decile when performance is measured using daily data over quarterly horizons, as listed in Table 9. In contrast, the abnormal return is 9 basis points when it is measured once over the entire sample, as shown in Table 11. Thus, the difference on the left-hand side of Equation (11) is positive, implying that the fund managers in our sample display negative timing activity when measured once over the entire time series using quarterly frequency data. Quarterly factor loadings are higher when quarterly factor returns are lower, and vice versa.

To test this explanation, we compute the covariances between the factor returns and the average factor loadings of the funds in our top decile across the post-ranking quarters. We do indeed find negative covariances for all four factors, all of comparable magnitude, and the absolute magnitude of the sum of the covariances is approximately equal to the 30 basis points (39 basis points -9 basis points) difference we are trying to explain. This result implies negative timing ability for each factor when ability is measured once over the entire sample period with quarterly frequency data. In contrast, our results in the previous section imply positive market
Timing ability when ability is measured using daily returns within each three-month post-ranking period.

What is the link between horizon and performance? The top decile of fund managers in aggregate may have positive short-term market timing ability, but may fail to time the market over longer horizons. As noted in Jagannathan and Korajczyk (1986), estimates of negative, or perverse, market timing ability have been documented consistently in previous research. Warther (1995), Ferson and Schadt (1996), and Edelen (1999) explain this anomaly as a consequence of a relation between fund performance and cash flow: investor subscriptions drive down a mutual fund’s beta when market returns are high. Our findings can be interpreted as evidence of this pattern. Top performers exhibit abnormal performance over the short term, but are punished in aggregate and over the long term by supplying liquidity to investors, who distort the funds’ factor loadings at inopportune times.

5. Conclusion

In this article, we revisit the issue of persistence in mutual fund performance, emphasizing short measurement periods. We rank funds every quarter by their risk-adjusted return measured over a three-month period using stock selection, market timing, and mixed strategy models. We then measure the risk-adjusted return of deciles of funds over the following three-month period. We find that the top decile of funds generates a statistically significant abnormal return in the post-ranking quarter of 25–39 basis points across the performance models.

We conduct a number of tests to ensure that our results are not spurious. First, our analysis generates results that are robust across stock selection, market timing, and mixed strategy models, which suggest that misspecification of the performance model is not driving the results. Second, we create a set of synthetic fund returns by simulating a momentum strategy. The after-expenses abnormal returns of these funds are, in almost all cases, negative. Third, we create a variety of momentum factors to reflect different momentum frequencies. Our results are robust across these momentum factors. Fourth, we ensure that the abnormal returns cannot be generated by exploiting Lo and MacKinlay’s (1990) cross-autocorrelation anomaly. Fifth, we ensure that the abnormal returns are not a spurious microstructure effect by reproducing our main result using monthly returns instead of daily returns.

Our results conflict with those of Carhart (1997), who finds no evidence of superior ability after controlling for the momentum anomaly. To determine possible sources of these disparate results, we rerun the analysis several times, each time varying our methodology so that it follows Carhart’s more closely. We find that when funds are sorted by return
rather than abnormal return, the post-ranking performance spread between the top and bottom deciles disappears. We also increase the length of time over which we measure risk-adjusted returns, both in the sorting procedure and in the post-ranking procedure. We find that the abnormal return of the top decile disappears in both cases. Finally, we form a concatenated series of post-ranking returns and estimate performance for each decile once over this time series, rather than estimating performance separately over each post-ranking quarter. We find no evidence of ability using the concatenated returns, and isolate a negative long-term relation between factor loadings and factor returns as the source of the difference between the results of different horizons. We relate the difference between short- and long-term performance measures to the difference between conditional and unconditional performance measures.

Our results are consistent with prior research that show that investor cash flows can distort inference in mutual fund performance. The impact of cash flow on performance can be controlled for using conditional methods, as in Edelen (1999). Our use of quarterly measurement periods can be viewed as an alternative approach to control for cash flow, by allowing mutual fund factor loadings to change over time.

Although our findings are statistically significant, and are robust to a battery of diagnostic tests, the economic significance of persistence in mutual fund abnormal returns is questionable. After taking into account transaction costs and taxes, investors may generate superior returns by following a naive buy-and-hold approach rather than a performance-chasing strategy, even if short-term performance is predictable.

References

